# Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO<sub>2</sub> Catalysis in Propane Oxidation Reactions

Xuanyu Zhang<sup>1,2</sup> Rui You<sup>1</sup> Zili Wu<sup>2</sup> Weixin Huang<sup>1\*</sup>

<sup>1</sup>Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, (P. R. China.) <sup>2</sup>Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830. \* huangwx@ustc.edu.cn

#### Introduction

A Ceria (CeO<sub>2</sub>) has been extensively studied as catalysts and catalyst supports in a wide array of catalytic reactions, particularly in catalytic oxidation reactions, due to its high oxygen storage capacity (OSC) and Ce<sup>4+</sup>/Ce<sup>3+</sup> redox cycle.<sup>1</sup> Recently, morphology engineering of catalyst nanoparticles is emerging as a novel strategy to tune their catalytic performances without changing catalyst compositions and meanwhile to establish their structure-performance relations.<sup>2,3</sup> Ni/CeO<sub>2</sub> catalysts have been studied as catalysts for water-gas shift reaction, selective catalytic reduction of NO with NH<sub>3</sub>, preferential CO oxidation in excess H<sub>2</sub>, methane combustion, oxidative dehydrogenation of light alkanes and reforming reactions. The CeO<sub>2</sub> morphology effect on NiO/CeO<sub>2</sub> catalysts were previously examined in several reactions.<sup>4,5</sup> However, systematic studies still lack, especially for CeO<sub>2</sub> rods whose surface structures were found to vary with calcination temperatures.<sup>6</sup> We employed CO and CO<sub>2</sub> chemisorption to probe the surface structures of various CeO<sub>2</sub> nanocrystals, in which CeO<sub>2</sub> rods calcined at 500 and 700 °C were found to mainly expose {110}+{100} and {111}+{110} facets, respectively.<sup>7</sup>

## **Materials and Methods**

CeO<sub>2</sub> nanocube and nanorod were prepared by the hydrothermal method and the The CeO<sub>2</sub> nanoparticles were purchased from Sigma-Aldrich. Ni/CeO<sub>2</sub> catalysts were prepared by the wet impregnation method. Compositions of catalysts were analyzed with a Perkin Elmer Optima 7300 DV inductively coupled plasma-atomic emission spectrometer (ICP-AES). X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250 high performance electron spectrometer using monochromatized Al K $\alpha$  radiation (hv = 1486.7 eV). H<sub>2</sub>-temperature programmed reduction (H<sub>2</sub>-TPR) experiments were performed on a Micromeritics Autochem 2920 apparatus equipped with TCD detector and an online mass spectrometer (HIDEN QIC-20).

## **Results and Discussion**

We performed peak deconvolution analysis of all H<sub>2</sub> TPR profiles, from which the H<sub>2</sub> consumption of  $\alpha 1$ ,  $\alpha 2$ ,  $\beta$  and  $\gamma$  peaks were acquired (Figure 1). In addition to the  $\alpha 1$ ,  $\alpha 2$ ,  $\beta$  and  $\gamma$  reduction peaks, Ni/c-CeO<sub>2</sub> catalysts exhibit another reduction peak (labelled as the  $\gamma^{2}$  peak) while other Ni/CeO<sub>2</sub> catalysts do not. The  $\gamma^{2}$  reduction peak lies between the  $\beta$  and  $\gamma$  reduction peaks and its H<sub>2</sub> consumption amount does not change much with the Ni loadings of Ni/c-CeO<sub>2</sub> catalysts. The above XPS results show that Ni/c-CeO<sub>2</sub> catalysts exhibit the Ni-O-Ce species with the strongest Ni-CeO<sub>2</sub> interaction among all Ni/CeO<sub>2</sub> catalysts. We thus assign the  $\gamma^{2}$  reduction peak to the reduction of CeO<sub>2</sub> activated by the very strongly-interacting Ni-O-Ce structure of Ni/c-CeO<sub>2</sub> catalysts. Likely correlations between the calculated C<sub>3</sub>H<sub>8</sub> combustion rates at 250 °C in C<sub>3</sub>H<sub>8</sub> combustion and the C<sub>3</sub>H<sub>6</sub> formation rates at 300 °C in ODHP reaction

of various Ni/CeO<sub>2</sub> catalysts and the amount of different oxygen species estimated from H<sub>2</sub> TPR results were comprehensive examined (Figure 2). Among the investigated Ni/CeO<sub>2</sub> catalysts, 2.5Ni/r-CeO<sub>2</sub>-500 catalysts exhibit the largest amount of strongly-activated oxygen species and the highest C<sub>3</sub>H<sub>8</sub> combustion rate in C<sub>3</sub>H<sub>8</sub> combustion reaction while 2.6Ni/c-CeO<sub>2</sub> catalyst exhibits the largest amount of the weakly-activated oxygen species and the highest C<sub>3</sub>H<sub>6</sub> formation rate in ODHP reaction. Thus, the CeO<sub>2</sub> morphology engineering strategy is effective in finely tuning the metal-CeO<sub>2</sub> interaction and the reactivity of oxygen species to meet the requirements of different types of catalytic oxidation rate inos.<sup>8</sup>

#### Significance



Figure 1. H<sub>2</sub>-TPR profiles with peak fitting of (A) Ni/r-CeO<sub>2</sub>-500, (B) Ni/c-CeO<sub>2</sub>, (C) Ni/r-CeO<sub>2</sub>-700 and (D) Ni/p-CeO<sub>2</sub> catalysts.



**Figure 2.** (A) Relationship between the propane oxidation rate at 250 °C in the propane combustion reaction and the H<sub>2</sub>-consumption values of  $(\alpha 1+\alpha 2)$  peak for various Ni/CeO<sub>2</sub> catalysts (B) Relationship between the propene formation rate in the ODHP reaction at 300 °C and the H<sub>2</sub>-consumption values of  $\gamma$  and  $(\gamma + \gamma')$  peaks for various Ni/CeO<sub>2</sub> catalysts. (C) Relationship between the propene formation rate at 300 °C in the ODHP reaction and the H<sub>2</sub>-consumption values of peak  $\gamma'$ ,  $\gamma$ ,  $(\gamma' + \gamma)$  for various Ni/CeO<sub>2</sub> catalysts.

### References

- 1. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Chem. Rev. 116, 5987 (2016).
- 2. Zhou, K.; Li, Y. Angew. Chem. Int. Ed. 51, 602 (2012).
- 3. Huang, W. Acc. Chem. Res. 49, 520 (2016).
- 4. Zou, W.; Ge, C.; Lu, M.; Wu, S.; Wang, Y.; Sun, J.; Pu, Y.; Tang, C.; Gao, F.; Dong, L. *RSC Adv.* 5, 98335 (2015).
- 5. Du, X.; Zhang, D.; Shi, L.; Gao, R.; Zhang, J. J. Phys. Chem. C 116, 10009 (2012).
- Ta, N.; Liu, J.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A.; Shen, W. J. Am. Chem. Soc. 134, 20585 (2012).
- 7. Chen, S.; Cao, T.; Gao, Y.; Li, Dan.; Xiong, F.; Huang, W. J. Phys. Chem. C 120, 21472 (2016).
- 8. Zhang, X.; You, R.; Li, D.; Huang, W. ACS Appl. Mater. Interfaces 9, 35897 (2017).