Hydrogen Charge of LOHC Compounds over Al₂O₃- and MgOsupported Ru Nanoparticles

Tae Wan Kim¹, Minseok Kim¹, and Young-Woong Suh^{1, 2}*

¹Department of Chemical Engineering, Hanyang University, Seoul 04763 (Republic of Korea) ²Research Institute of Industrial Science, Hanyang University, Seoul 04763 (Republic of Korea) *ywsuh@hanyang.ac.kr

Introduction

Liquid organic hydrogen carrier (LOHC) systems have recently attracted a great deal of attention in storing and releasing hydrogen under a mild condition. Marlotherm®-type heat transfer fluids (monobenzyl toluene or dibenzyl toluene) supplied by Sasol company are an interesting LOHC material with a hydrogen storage capacity of 6.2 wt%, a high boiling point of more than 280 °C and a low melting point of less than -30 °C [1]. Although the dehydrogenation of H₂-rich LOHC compounds generally requires a high reaction temperature of more than 270 °C [2,3], the hydrogenation reaction is also important for fast H₂ storage at low temperatures. Thus, we focused on the development of an active catalyst for the hydrogen charge of monobenzyl toluene (H₀-MBT) and dibenzyl toluene (H₀-DBT) at low temperatures.

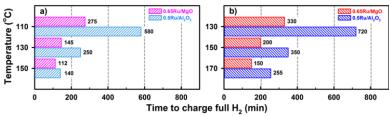
In most studies the hydrogenation of LOHC compounds was performed over Ru catalysts supported on Al_2O_3 with Lewis acidity [4]. Recently, Ru/MgO catalyst has been also investigated for the hydrogenation reaction due to heterolytic hydrogen splitting by aid of basic character of MgO support [5]. Hence, we have herein compared the hydrogenation activity of Ru/Al₂O₃ and Ru/MgO catalysts with respect to the time to charge full H_2 for H_0 -MBT and H_0 -DBT, which will serve as a recommendation for the hydrogenation catalyst.

Materials and Methods

 Al_2O_3 - and MgO-supported Ru catalysts were prepared by impregnating the commercial γ -Al₂O₃ (Strem Chemicals) and the lab-made Mg(OH)₂ with a solution of Ru₃(CO)₁₂ (Sigma-Aldrich Co.) in tetrahydrofuran, respectively. After the suspension was stirred at room temperature, the solvent was removed in a rotary evaporator (EYELA) under a reduced pressure at 45 °C. The obtained sample was dried for 8 h at 105 °C followed by thermal activation for 6 h at 500 °C (5 °C/min) in a H₂ flow (100 ml/min).

The hydrogenation activity was tested in a Parr reactor equipped with a glass liner (volume 100 ml). The substrate H_0 -MBT or H_0 -DBT (15 g) and a supported Ru catalyst (0.045 mol% Ru/H₀-MBT and 0.10 mol% Ru/H₀-DBT) were added into the reactor. After sufficient N_2 purge, the reactor was pressurized with 99.99% hydrogen to 50 bar that was maintained throughout the reaction using a back pressured regulator. Then, the reactor was heated to a desired temperature while stirring at a rate of 1200 rpm. Finally, the time to obtain the full hydrogenation product H_{12} -MBT or H_{18} -DBT by GC analysis of liquid products was measured.

Results and Discussion


0.5Ru/Al $_2$ O $_3$ (0.5 wt% Ru by ICP) and 0.65Ru/MgO (0.65 wt% Ru by ICP) samples showed the average Ru particle size of 1.1 and 1.4 nm, respectively (Table 1). When the

hydrogenation reaction was performed at 150, 130 and 110 °C, the time required for full charge of $H_0\text{-}MBT$ was estimated to be 112, 145, and 275 min over 0.65Ru/MgO and 140, 250, and 580 min over 0.5Ru/Al $_2\text{O}_3$, respectively (Fig. 1). The tests for full conversion of $H_0\text{-}DBT$ to $H_{18}\text{-}DBT$ at 170, 150 and 130 °C also verified the superior catalytic performance of 0.5Ru/MgO to 0.65Ru/MgO. Notably, the activity difference between the two catalysts was much larger at lower reaction temperatures. This phenomenon was associated with a stronger adsorption of the substrate onto Ru/MgO and, importantly, a higher H_2 abstraction by heterolytic hydrogen splitting taking place in Ru/MgO. The characterization results will be presented on the symposium site.

Table 1. Properties of Al₂O₃- and MgO-supported Ru catalysts

Sample	Ru ^a [wt%]	$S_{\rm BET}^{\ \ b} \left[{ m m}^2/{ m g} \right]$	$d_{\mathrm{Ru}}^{\mathrm{c}}\left[\%\right]$	
0.5Ru/Al ₂ O ₃	0.50	270	1.1	
0.65Ru/MgO	0.65	196	1.4	

[a] Actual Ru loading measured by ICP-OES. [b] BET surface area measured by N_2 physisorption at 77 K. [c] Ru⁰ particle size measured by CO chemisorption.

Figure 1. The time required to fully H₂ charge in a) H₀-MBT or b) H₀-DBT over Ru/MgO (red bars) and Ru/Al₂O₃ (blue bars).

Significance

Ru/MgO catalyst exhibited the fast hydrogenation kinetics in H_2 charge into homocyclic Marlotherm-type LOHC compounds at lower temperatures compared to Ru/Al₂O₃, which was supported by the facile adsorption of the substrate and the higher H_2 abstraction over Ru/MgO.

References

- Brücker, N., Obesser, K., Bösmann, A., Teichmann, D., Arlt, W., Dungs, J., and Wasserscheid, P. ChemSusChem 7, 229 (2014).
- 2. Preuster, P., Papp., C., and Wasserscheid, P. ACC. Chem. Res. 50, 74 (2017).
- Oh, J., Jeong, K., Kim, T.W., Kwon, H., Han, J.W., Park, J.H., and Suh, Y-W. *ChemSusChem* 11, 661 (2018).
- Jorschick, H., Preuster, P., Dürr, S., Seidel, A., Müller, K., Bösmann, A., and Wasserscheid, P. Energy Environ., Sci. 10, 1652 (2017).
- 5. Fang, M. and Sánchez-Delgado, R.A. J. Catal. 311, 357 (2014).