How Pt Interacts with CeO₂ under the Reducing and Oxidizing Environments at Elevated Temperature? The Origin of Improved Thermal Stability of Pt/CeO₂ Compared to CeO₂

Jaeha Lee¹, YoungSeok Ryou¹, Xiaojun Chan², Tae Jin Kim², Do Heui Kim^{1*}

¹School of Chem. and Bio.Eng., Seoul National University, Seoul, 151-744 Rep. of Korea ² Department of Mat. Sci. and Chem. Eng., Stony Brook University, Stony Brook, NY 11794, USA

*corresponding author:dohkim@snu.ac.kr

Introduction

Higher metal dispersion can be obtained via strong interaction between metal and support. Nagai et al. reported that Pt-Ceria interaction maintains high platinum dispersion even after oxidative treatment at high temperature based on the EXAFS spectroscopy results, which demonstrated the formation of strong Pt-O-Ce bond. Farmer and Campbell also reported that Ceria maintains small metal particle size through strong metal support interaction. Many catalytic reactions, including automotive catalytic reaction and water-gas-shift reaction, utilize such strong metal support interaction between precious metal and Ceria to attain high catalytic activity. Therefore, understanding metal-Ceria interaction is of practical importance to provide rational design of Ceria based catalysts.

In the present work, Pt-Ceria interaction under the oxidizing/reducing environment and the role of the interaction in determining the thermal stability of Pt/CeO₂ were investigated in detail. It was found that Pt-O-Ce bond formed upon oxidative treatment plays a crucial role in preventing Ceria agglomeration at elevated temperature.

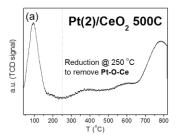
Materials and Methods

Ceria, obtained from Rhodia, had a surface area of 120 $m^2/g.$ 2 wt% of Pt was impregnated on Ceria by the incipient wetness impregnation method with aqueous $Pt(NH_3)_4(NO_3)_2$ (Sigma Aldrich, 99.99 % grade, metal basis) solution. Dried samples were treated in flowing 100 mL/min of 15 %O_2/N_2 or 10 %H_2/N_2 or N_2 for 2 h at the selected temperature; capital letter C, R, and NC represent each treatment, respectively. For example, $Pt(2)/CeO_2$ 500C 250R 800NC was prepared by oxidizing $Pt(2)/CeO_2$ sample at 500 °C for 2 h, followed by reducing at 250 °C for 2 h, and then thermally treating under N_2 flow for 2 h.

Pt-Ceria interaction has been extensively investigated by combining various characterization methods including X-ray diffraction (XRD), N_2 adsorption/desorption (BET/BJH), H_2 temperature programmed reduction (TPR), pulsed and static CO-chemisorption, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and Raman spectroscopy.

Results and Discussion

According to Raman spectroscopy, Pt/CeO₂ possesses strong Pt-O-Ce bond after the oxidative treatment. After the reductive treatment at mild temperature (< 500 °C), Pt seems to situate on the oxygen vacancy of Ceria surface, based on CO chemisorption results. At


reduction temperature of $800\,^{\circ}\text{C}$, where bulk Ceria is reduced, the structure of Pt/Ceria collapsed.

Under the oxidative atmosphere, it was observed that the strong Pt-O-Ce bond maintains ceria structure from collapsing even at high temperature as high as 800 °C. When Pt-O-Ce bond was selectively removed, thermal stability of Pt/Ceria was greatly weakened. **Figure 1(a)** is H2-TPR curve of Pt(2)/CeO2 500C catalyst. Two reduction peaks centered at ~100 °C and ~780 °C are observed; the former originates from the reduction of Pt-O-Ce bond and surface Ceria while the latter originates from the reduction of bulk Ceria. By reducing the catalyst at 250 °C, Pt-O-Ce bond can be eliminated completely without affecting the pore structure of Ceria. **Figure 1(b)** is BJH pore size distribution curve of Pt(2)/CeO2 catalyst after different thermal treatments (500C, 500C 250R 800NC, and 500C 800NC). Pt(2)/CeO2 was treated at 800 °C under the N2 flow (inert gas), with and without Pt-O-Ce bond. On **Figure 1(b)**, it is observed that in the presence of Pt-O-Ce bond the pore structure of Pt(2)/CeO2 was maintained (800C and 500C 800NC), while in the absence of Pt-O-Ce bond the pore structure collapsed significantly (500C 250R 800NC). This strongly implies that the presence of Pt-O-Ce bond is crucial to prevent Ceria agglomeration at high temperature under the oxidative atmosphere. It was confirmed that the thermal stability of Ceria is enhanced in the presence of Pt-O-Ce bond.

While Pt-O-Ce bond inhibited Pt sintering and Ceria agglomeration, Pt-Ceria interaction was strengthened after the oxidative treatment at high temperature. To explain the phenomena, Pt-diffusion model is proposed, based on H_2 -TPR, In-situ Raman, and XPS results.

Significance

Strong Pt-O-Ce bond inhibits Pt sintering as well as Ceria agglomeration even at temperature as high as $800\,^{\circ}$ C. Thermally stable catalyst could be rationally designed and developed by utilizing such strong Pt-Ceria interaction.

Figure 1. (a) H₂-TPR curve of Pt(2)/CeO₂ 500C. Reductive treatment at 250 °C reduces Ceria surface as well as Pt-O-Ce bond. (b) BJH pore size distribution curve of Pt(2)/CeO₂ catalyst, after various thermal treatments (800C, 500C 250R 800NC, 500C 800NC).

References

- 1. Y. Nagai et al., J. Catal., 242 103–109 (2006).
- 2. J.A. Farmer, C.T. Campbell *Science*, 329, 5994, 933-936 (2010).
- 3. J.H. Lee et al, J. Phys. Chem. C, **DOI:** 10.1021/acs.jpcc.6b08656.