Dual function materials for CO₂ capture and conversion using renewable H₂

Melis S.Duyar¹, Martha A. Arellano-Treviño², Robert J. Farrauto¹*

¹Columbia University, Earth and Environmental Engineering, 500 W 120th Street, 10027 New York, NY, USA

²Columbia University, Chemical Engineering, 500 W 120th Street, 10027 New York, NY, USA *rf2182@columbia.edu

Introduction

In order to prevent further accumulation of CO₂ in the atmosphere, it must be captured for storage or converted to useful products. Current materials and processes for CO₂ capture are energy intensive. We report novel dual function solid adsorbent/catalytic materials (DFM), both components of which capture CO₂ from an emission source and at the same temperature (320°C) in the same reactor convert it to synthetic natural gas, requiring no additional heat input. The DFM consists of Ru as methanation catalyst and nano dispersed CaO as a CO₂ adsorbent, both dispersed on a porous γ -Al₂O₃ carrier. Upon the addition of stored renewable H₂ a spillover process drives CO₂ from the sorbent to the Ru sites where methanation occurs... This approach utilizes flue gas sensible heat and eliminates the current energy intensive and corrosive capture and storage processes without having to transport captured CO₂. The CH₄ produced is recycled to the front end of the process where it is again combusted for power generation.

Our previous work has shown that CaO dispersed on γ -Al₂O₃ (CaO/ γ -Al₂O₃) behaves radically different compared to bulk or unsupported CaO. This dispersion creates nano-sized islands of CaO, which are able to reversibly chemisorb CO₂ and therefore capture and release it at moderate temperatures (~300°C) compared to bulk CaO (~800°C)^{1, 2}. This is a critical advantage due to reversible adsorption and methanation at the same temperature.

Materials and Methods

Dual function materials were prepared by incipient wetness impregnation of either $Ru(NO)(NO_3)_2$ on 10 wt.% CaO/γ -Al₂O₃ or of $Ca(NO_3)_2$ on 10 wt.% Ru/γ -Al₂O₃. Detailed preparation procedures for CaO/γ -Al₂O₃² and Ru/γ -Al₂O₃³ can be found in our previous work. All samples were dried in air at 120°C for 1 hour and calcined in air at 320°C for 2 hours. This pretreatment ensured the decomposition of $Ru(NO)(NO_3)_2$ to Ru. The DFMs received in-situ pre-reduction in 4%H₂/N₂ at 320°C for 2 hours at the beginning of each reactor test to ensure decomposition of $Ca(NO_3)_2$ to CaO.

Cyclic testing in a packed bed reactor: 1.0344g powder 5%Ru,10%CaO/ γ -Al₂O₃ was packed inside a quartz tube housed in a furnace. Gas analysis was performed on-line via an Enerac, an IR based gas analyzer for combustion applications. The DFM was pre-reduced insitu at 320°C for 2 hours using 5% H₂/N₂ (46.3 mL/min). CO₂ capture was performed from a source of 8%CO₂/21%H₂O/Air (22.1 mL/min). One cycle consisted of CO₂ capture, He purge and methanation. After CO₂ capture for 20 minutes the reactor was purged with He until CO₂ and O₂ could no longer be detected at the exit. This was followed by methanation, with 5%H₂/N₂ for 20 minutes. The cyclic experiment was performed with the same volume of γ -Al₂O₃ as a background test during which methanation was not observed.

Results and Discussion

 $\rm CO_2$ capture and subsequent methanation was demonstrated with Ru and CaO compositions that varied between 0-10 wt.% at a temperature of 320°C. 5%Ru 10%CaO/γ-Al₂O₃ was chosen as the optimum composition and was further investigated under realistic power plant $\rm CO_2$ capture conditions (in the presence of air and steam). Figure 1 displays stable methanation performance for the 20-cycle test where $\rm CO_2$ capture was performed from 8%CO₂/21%H₂O/Air and subsequently methanated (both at 320°C). The average methanation capacity was 0.27 g-mol/kg DFM. The methane released had an average purity of 99.9% over all 20 cycles. The high purity of methane released creates the advantage of simplicity in overall process design. A high purity methane yield eliminates the need for downstream catalytic treatments to prepare the gas for injection to natural gas pipelines or recycle to the front end of the process.

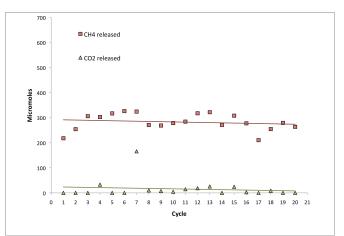


Figure 1: CH₄ and CO₂ released during methanation for 20 cycles. T=320°C.

Significance

The use of synthetic fuels made from CO_2 as carriers for excess renewable electricity offers a solution to manage fluctuating output of renewable energy while mitigating CO_2 emissions and producing a useful fuel. Capturing CO_2 and releasing it as a fuel using a single reactor can make CCS more feasible by eliminating problems related to the energy intensity of sorbent regeneration, transportation and processing of captured CO_2 and injection of CO_2 underground for storage.

References

- P. Gruene, A. G. Belova, T. M. Yegulalp, R. J. Farrauto and M. J. Castaldi, Industrial & Engineering Chemistry Research, 2011, 50, 4042-4049.
- M. S. Duyar, R. J. Farrauto, M. J. Castaldi and T. M. Yegulalp, *Industrial & Engineering Chemistry Research*, 2014, 53, 1064-1072.