Polymer Supported Iridium Catalysts for the Capture and Conversion of CO₂ to Formic Acid

Nicholas D. McNamara and Jason C. Hicks*
University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, IN 46556 (USA)
*jhicks3@nd.edu

Introduction
Carbon dioxide (CO₂) is a promising candidate as renewable resource for the production of useful materials because it is abundant, non-toxic, and economical [1]. One such example of this is the direct hydrogenation of CO₂ which leads to the production of formic acid. Formic acid is a beneficial product that could be used as a preservative, an insecticide, a reducing agent of metallic ions, a precursor for further upgrade to esters, allyl alcohols, and oxalic acid, and others [2]. The objective of this work was to design a new catalyst capable of both capturing CO₂ and converting it to formic acid once captured. To that end, a highly-branched polyethyleneimine (PEI) polymer was modified at the primary amines to form a bidentate imine-triphenylphosphate functionality and then coordinated with an Ir metal center (Scheme 1). The resulting material was then referred to as PEI-PN-Ir. The PEI backbone of the catalyst contains multiple types of amine functionalities capable of capturing CO₂ in an aqueous environment [3], potentially bringing it in close proximity to the PN-Ir functionality which is capable of acting as a hydrogenation catalyst [4]. Additionally, several other similar catalysts with different ligand P and N type functionality were synthesized. These materials were then tested for catalytic activity in the hydrogenation of CO₂ to formic acid.

![Scheme 1. Synthesis sequence for PEI-PN-Ir.](image)

Materials and Methods
To synthesize PEI-PN-Ir, PEI and 2-(diphenylphosphino)benzaldehyde were reacted in toluene. The resultant product was then refluxed in ethanol with IrCl₃. In a typical reaction, a 50 mL stainless steel batch reactor rated to 300 °C and 3000 psig was charged with a 27 mL mixture of water, triethylamine (base), 1,4-dioxane (internal standard), and PEI-PN-Ir in varying quantities. The reactor was then purged three times with H₂ and then charged with 40 bar H₂ and stirred for 30 minutes to activate the catalyst. The headspace in the reactor was then evacuated and the reactor was charged with 20 bar CO₂ and 20 bar H₂ at room temperature. The mixture was heated to the appropriate temperature and allowed to react. The reaction results were analyzed by ¹H NMR using dioxane as an internal standard.

Results and Discussion
The synthesized materials were subjected to a series of techniques to identify the structure and properties including FTIR, XPS, and NMR. PEI-PN-Ir was tested for catalytic activity in the hydrogenation of CO₂ to formic acid. In the first study, the total system volume (water + base) was kept constant but the relative ratio of water to base was altered (Table 1). When the system contained no water, no formic acid was produced indicating water was a necessary component in the reaction. Successively doping in more water lead to higher reaction rates until a maximum at 5% base was reached. At 0% added base, the TOF value while low was non-zero indicating the PEI-PN-Ir material was capable of capturing CO₂ and subsequently converting it to formic acid. The PEI-PN-Ir material was tested for recyclability which showed an initial decrease in activity after the first cycle but then reaction rates remained stable for subsequent reactions. Additionally, similar catalysts with different P and N-type functionalities were synthesized. It was determined that the combination of imine and triphenylphosphine functionality in PEI-PN-Ir yielded the highest reaction rates.

<table>
<thead>
<tr>
<th>Base Vol. %</th>
<th>Activity (mol FA mol Ir⁻¹ h⁻¹)</th>
<th>Base Vol. %</th>
<th>Activity (mol FA mol Ir⁻¹ h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>7.5</td>
<td>170</td>
</tr>
<tr>
<td>99.8</td>
<td>0</td>
<td>5</td>
<td>226</td>
</tr>
<tr>
<td>99.6</td>
<td>0.1</td>
<td>2.5</td>
<td>190</td>
</tr>
<tr>
<td>96</td>
<td>95</td>
<td>1</td>
<td>172</td>
</tr>
<tr>
<td>92.5</td>
<td>151</td>
<td>0</td>
<td>>0</td>
</tr>
</tbody>
</table>

Significance
This work exhibits a newly-synthesized, multi-functional catalyst capable of both capturing CO₂ from the gas phase, bringing it into the aqueous phase, and catalyzing its hydrogenation to formic acid.

Funding
We would like to thank cSEND and the University of Notre Dame for funding support.

References
5. McNamara, N.D., Xu, Z., Hicks, J.C. manuscript in progress
6. Xu, Z., McNamara, N.D., Hicks, J.C. Submitted